16 research outputs found

    Hybrid mapping for static and non-static indoor environments

    Get PDF
    Mención Internacional en el título de doctorIndoor environments populated by humans, such as houses, offices or universities, involve a great complexity due to the diversity of geometries and situations that they may present. Apart from the size of the environment, they can contain multiple rooms distributed into floors and corridors, repetitive structures and loops, and they can get as complicated as one can imagine. In addition, the structure and situations that the environment present may vary over time as objects could be moved, doors can be frequently opened or closed and places can be used for different purposes. Mobile robots need to solve these challenging situations in order to successfully operate in the environment. The main tools that a mobile robot has for dealing with these situations relate to navigation and perception and comprise mapping, localization, path planning and map adaptation. In this thesis, we try to address some of the open problems in robot navigation in non-static indoor environments. We focus on house-like environments as the work is framed into the HEROITEA research project that aims attention at helping elderly people with their everyday-life activities at their homes. This thesis contributes to HEROITEA with a complete robotic mapping system and map adaptation that grants safe navigation and understanding of the environment. Moreover, we provide localization and path planning strategies within the resulting map to further operate in the environment. The first problem tackled in this thesis is robot mapping in static indoor environments. We propose a hybrid mapping method that structures the information gathered from the environment into several maps. The hybrid map contains diverse knowledge of the environment such as its structure, the navigable and blocked paths, and semantic knowledge, such as the objects or scenes in the environment. All this information is separated into different components of the hybrid map that are interconnected so the system can, at any time, benefit from the information contained in every component. In addition to the conceptual conception of the hybrid map, we have also developed building procedures and an exploration algorithm to autonomous build the hybrid map. However, indoor environments populated by humans are far from being static as the environment may change over time. For this reason, the second problem tackled in this thesis is the adaptation of the map to non-static environments. We propose an object-based probabilistic map adaptation that calculates the likelihood of moving or remaining in its place for the different objects in the environment. Finally, a map is just a description of the environment whose importance is mostly related to how the map is used. In addition, map representations are more valuable as long as they offer a wider range of applications. Therefore, the third problem that we approach in this thesis is exploiting the intrinsic characteristics of the hybrid map in order to enhance the performance of localization and path planning methods. The particular objectives of these approaches are precision for robot localization and efficiency for path planning in terms of execution time and traveled distance. We evaluate our proposed methods in a diversity of simulated and real-world indoor environments. In this extensive evaluation, we show that hybrid maps can be efficiently built and maintained over time and they open up for new possibilities for localization and path planning. In this thesis, we show an increase in localization precision and robustness and an improvement in path planning performance. In sum, this thesis makes several contributions in the context of robot navigation in indoor environments, and especially in hybrid mapping. Hybrid maps offer higher efficiency during map building and other applications such as localization and path planning. In addition, we highlight the necessity of dealing with the dynamics of indoor environments and the benefits of combining topological, semantic and metric information to the autonomy of a mobile robot.Los entornos de interiores habitados por personas, como casas, oficinas o universidades, entrañan una gran complejidad por la diversidad de geometrías y situaciones que pueden ocurrir. Aparte de las diferencias en tamaño, estos entornos pueden contener muchas habitaciones organizadas en diferentes plantas o pasillos, pueden presentar estructuras repetitivas o bucles de tal forma que los entornos pueden llegar a ser tan complejos como uno se pueda imaginar. Además, la estructura y el estado del entorno pueden variar con el tiempo, ya que los objetos pueden moverse, las puertas pueden estar cerradas o abiertas y diferentes espacios pueden ser usados para diferentes propósitos. Los robots móviles necesitan resolver estas situaciones difíciles para poder funcionar de una forma satisfactoria. Las principales herramientas que tiene un robot móvil para manejar estas situaciones están relacionadas con la navegación y la percepción y comprenden el mapeado, la localización, la planificación de trayectorias y la adaptación del mapa. En esta tesis, abordamos algunos de los problemas sin resolver de la navegación de robots móviles en entornos de interiores no estáticos. Nos centramos en entornos tipo casa ya que este trabajo se enmarca en el proyecto de investigación HEROITEA que se enfoca en ayudar a personas ancianas en tareas cotidianas del hogar. Esta tesis contribuye al proyecto HEROITEA con un sistema completo de mapeado y adaptación del mapa que asegura una navegación segura y la comprensión del entorno. Además, aportamos métodos de localización y planificación de trayectorias usando el mapa construido para realizar nuevas tareas en el entorno. El primer problema que se aborda en esta tesis es el mapeado de entornos de interiores estáticos por parte de un robot. Proponemos un método de mapeado híbrido que estructura la información capturada en varios mapas. El mapa híbrido contiene información sobre la estructura del entorno, las trayectorias libres y bloqueadas y también incluye información semántica, como los objetos y escenas en el entorno. Toda esta información está separada en diferentes componentes del mapa híbrido que están interconectados de tal forma que el sistema puede beneficiarse en cualquier momento de la información contenida en cada componente. Además de la definición conceptual del mapa híbrido, hemos desarrollado unos procedimientos para construir el mapa y un algoritmo de exploración que permite que esta construcción se realice autónomamente. Sin embargo, los entornos de interiores habitados por personas están lejos de ser estáticos ya que pueden cambiar a lo largo del tiempo. Por esta razón, el segundo problema que intentamos solucionar en esta tesis es la adaptación del mapa para entornos no estáticos. Proponemos un método probabilístico de adaptación del mapa basado en objetos que calcula la probabilidad de que cada objeto en el entorno haya sido movido o permanezca en su posición anterior. Para terminar, un mapa es simplemente una descripción del entorno cuya importancia está principalmente relacionada con su uso. Por ello, los mapas más valiosos serán los que ofrezcan un rango mayor de aplicaciones. Para abordar este asunto, el tercer problema que intentamos solucionar es explotar las características intrínsecas del mapa híbrido para mejorar el desempeño de métodos de localización y de planificación de trayectorias usando el mapa híbrido. El objetivo principal de estos métodos es aumentar la precisión en la localización del robot y la eficiencia en la planificación de trayectorias en relación al tiempo de ejecución y la distancia recorrida. Hemos evaluado los métodos propuestos en una variedad de entornos de interiores simulados y reales. En esta extensa evaluación, mostramos que los mapas híbridos pueden construirse y mantenerse en el tiempo de forma eficiente y que dan lugar a nuevas posibilidades en cuanto a localización y planificación de trayectorias. En esta tesis, mostramos un aumento en la precisión y robustez en la localización y una mejora en el desempeño de la planificación de trayectorias. En resumen, esta tesis lleva a cabo diversas contribuciones en el ámbito de la navegación de robots móviles en entornos de interiores, y especialmente en mapeado híbrido. Los mapas híbridos ofrecen más eficiencia durante la construcción del mapa y en otras tareas como la localización y la planificación de trayectorias. Además, resaltamos la necesidad de tratar los cambios en entornos de interiores y los beneficios de combinar información topológica, semántica y métrica para la autonomía del robot.Programa de Doctorado en Ingeniería Eléctrica, Electrónica y Automática por la Universidad Carlos III de MadridPresidente: Carlos Balaguer Bernaldo de Quirós.- Secretario: Javier González Jiménez.- Vocal: Nancy Marie Amat

    Object detection applied to indoor environments for mobile robot navigation

    Get PDF
    To move around the environment, human beings depend on sight more than their other senses, because it provides information about the size, shape, color and position of an object. The increasing interest in building autonomous mobile systems makes the detection and recognition of objects in indoor environments a very important and challenging task. In this work, a vision system to detect objects considering usual human environments, able to work on a real mobile robot, is developed. In the proposed system, the classification method used is Support Vector Machine (SVM) and as input to this system, RGB and depth images are used. Different segmentation techniques have been applied to each kind of object. Similarly, two alternatives to extract features of the objects are explored, based on geometric shape descriptors and bag of words. The experimental results have demonstrated the usefulness of the system for the detection and location of the objects in indoor environments. Furthermore, through the comparison of two proposed methods for extracting features, it has been determined which alternative offers better performance. The final results have been obtained taking into account the proposed problem and that the environment has not been changed, that is to say, the environment has not been altered to perform the tests.The research leading to these results has received funding from the RoboCity2030-III-CM project (Robótica aplicada a la mejora de la calidad de vida de los ciudadanos, fase III; S2013/MIT-2748), funded by Programas de Actividades I+D en la Comunidad de Madrid and co-funded by Structural Funds of the EU and NAVEGASE-AUTOCOGNAV project (DPI2014-53525-C3-3-R), funded by Ministerio de Economía y competitividad of Spain

    A topological navigation system for indoor environments based on perception events

    Get PDF
    The aim of the work presented in this article is to develop a navigation system that allows a mobile robot to move autonomously in an indoor environment using perceptions of multiple events. A topological navigation system based on events that imitates human navigation using sensorimotor abilities and sensorial events is presented. The increasing interest in building autonomous mobile systems makes the detection and recognition of perceptions a crucial task. The system proposed can be considered a perceptive navigation system as the navigation process is based on perception and recognition of natural and artificial landmarks, among others. The innovation of this work resides in the use of an integration interface to handle multiple events concurrently, leading to a more complete and advanced navigation system. The developed architecture enhances the integration of new elements due to its modularity and the decoupling between modules. Finally, experiments have been carried out in several mobile robots, and their results show the feasibility of the navigation system proposed and the effectiveness of the sensorial data integration managed as events.The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: The research leading to these results has received funding from the RoboCity2030-III-CM project (Robótica aplicada a la mejora de la calidad de vida de los ciudadanos. fase III; S2013/MIT-2748), funded by Programas de Actividades I+D en la Comunidad de Madrid and cofunded by Structural Funds of the EU and NAVEGASE-AUTOCOGNAV project (DPI2014-53525-C3-3-R) and funded by Ministerio de Economía y competitividad of SPAIN

    A Semantic Labeling of the Environment Based on What People Do

    Get PDF
    In this work, a system is developed for semantic labeling of locations based on what people do. This system is useful for semantic navigation of mobile robots. The system differentiates environments according to what people do in them. Background sound, number of people in a room and amount of movement of those people are items to be considered when trying to tell if people are doing different actions. These data are sampled, and it is assumed that people behave differently and perform different actions. A support vector machine is trained with the obtained samples, and therefore, it allows one to identify the room. Finally, the results are discussed and support the hypothesis that the proposed system can help to semantically label a room.The research leading to these results has received funding from the RoboCity2030-III-CMproject (Robótica aplicada a la mejora de la calidad de vida de los ciudadanos. fase III; S2013/MIT-2748), funded by Programas de Actividades I+Den la Comunidad de Madrid and cofunded by Structural Funds of the EU and NAVEGASEAUTOCOGNAVproject (DPI2014-53525-C3-3-R), funded by Ministerio de Economía y Competitividad of Spain.The research leading to these results has received funding from the RoboCity2030-III-CMproject (Robótica aplicada a la mejora de la calidad de vida de los ciudadanos. fase III; S2013/MIT-2748), funded by Programas de Actividades I+Den la Comunidad de Madrid and cofunded by Structural Funds of the EU and NAVEGASEAUTOCOGNAVproject (DPI2014-53525-C3-3-R), funded by Ministerio de Economía y Competitividad of Spain

    Healthcare workers hospitalized due to COVID-19 have no higher risk of death than general population. Data from the Spanish SEMI-COVID-19 Registry

    Get PDF
    Aim To determine whether healthcare workers (HCW) hospitalized in Spain due to COVID-19 have a worse prognosis than non-healthcare workers (NHCW). Methods Observational cohort study based on the SEMI-COVID-19 Registry, a nationwide registry that collects sociodemographic, clinical, laboratory, and treatment data on patients hospitalised with COVID-19 in Spain. Patients aged 20-65 years were selected. A multivariate logistic regression model was performed to identify factors associated with mortality. Results As of 22 May 2020, 4393 patients were included, of whom 419 (9.5%) were HCW. Median (interquartile range) age of HCW was 52 (15) years and 62.4% were women. Prevalence of comorbidities and severe radiological findings upon admission were less frequent in HCW. There were no difference in need of respiratory support and admission to intensive care unit, but occurrence of sepsis and in-hospital mortality was lower in HCW (1.7% vs. 3.9%; p = 0.024 and 0.7% vs. 4.8%; p<0.001 respectively). Age, male sex and comorbidity, were independently associated with higher in-hospital mortality and healthcare working with lower mortality (OR 0.211, 95%CI 0.067-0.667, p = 0.008). 30-days survival was higher in HCW (0.968 vs. 0.851 p<0.001). Conclusions Hospitalized COVID-19 HCW had fewer comorbidities and a better prognosis than NHCW. Our results suggest that professional exposure to COVID-19 in HCW does not carry more clinical severity nor mortality

    Effectiveness of an intervention for improving drug prescription in primary care patients with multimorbidity and polypharmacy:Study protocol of a cluster randomized clinical trial (Multi-PAP project)

    Get PDF
    This study was funded by the Fondo de Investigaciones Sanitarias ISCIII (Grant Numbers PI15/00276, PI15/00572, PI15/00996), REDISSEC (Project Numbers RD12/0001/0012, RD16/0001/0005), and the European Regional Development Fund ("A way to build Europe").Background: Multimorbidity is associated with negative effects both on people's health and on healthcare systems. A key problem linked to multimorbidity is polypharmacy, which in turn is associated with increased risk of partly preventable adverse effects, including mortality. The Ariadne principles describe a model of care based on a thorough assessment of diseases, treatments (and potential interactions), clinical status, context and preferences of patients with multimorbidity, with the aim of prioritizing and sharing realistic treatment goals that guide an individualized management. The aim of this study is to evaluate the effectiveness of a complex intervention that implements the Ariadne principles in a population of young-old patients with multimorbidity and polypharmacy. The intervention seeks to improve the appropriateness of prescribing in primary care (PC), as measured by the medication appropriateness index (MAI) score at 6 and 12months, as compared with usual care. Methods/Design: Design:pragmatic cluster randomized clinical trial. Unit of randomization: family physician (FP). Unit of analysis: patient. Scope: PC health centres in three autonomous communities: Aragon, Madrid, and Andalusia (Spain). Population: patients aged 65-74years with multimorbidity (≥3 chronic diseases) and polypharmacy (≥5 drugs prescribed in ≥3months). Sample size: n=400 (200 per study arm). Intervention: complex intervention based on the implementation of the Ariadne principles with two components: (1) FP training and (2) FP-patient interview. Outcomes: MAI score, health services use, quality of life (Euroqol 5D-5L), pharmacotherapy and adherence to treatment (Morisky-Green, Haynes-Sackett), and clinical and socio-demographic variables. Statistical analysis: primary outcome is the difference in MAI score between T0 and T1 and corresponding 95% confidence interval. Adjustment for confounding factors will be performed by multilevel analysis. All analyses will be carried out in accordance with the intention-to-treat principle. Discussion: It is essential to provide evidence concerning interventions on PC patients with polypharmacy and multimorbidity, conducted in the context of routine clinical practice, and involving young-old patients with significant potential for preventing negative health outcomes. Trial registration: Clinicaltrials.gov, NCT02866799Publisher PDFPeer reviewe

    Topological frontier-based exploration and map-building using semantic information

    Get PDF
    This article belongs to the Special Issue "Mobile Robot Navigation"Exploration of unknown environments is a fundamental problem in autonomous robotics that deals with the complexity of autonomously traversing an unknown area while acquiring the most important information of the environment. In this work, a mobile robot exploration algorithm for indoor environments is proposed. It combines frontier-based concepts with behavior-based strategies in order to build a topological representation of the environment. Frontier-based approaches assume that, to gain the most information of an environment, the robot has to move to the regions on the boundary between open space and unexplored space. The novelty of this work is in the semantic frontier classification and frontier selection according to a cost&-utility function. In addition, a probabilistic loop closure algorithm is proposed to solve cyclic situations. The system outputs a topological map of the free areas of the environment for further navigation. Finally, simulated and real-world experiments have been carried out, their results and the comparison to other state-of-the-art algorithms show the feasibility of the exploration algorithm proposed and the improvement that it offers with regards to execution time and travelled distance.The research leading to these results received funding from HEROITEA: Heterogeneous Intelligent Multi-Robot Team for Assistance of Elderly People (RTI2018-095599-B-C21), funded by Spanish Ministerio de Economía y Competitividad

    Change detection using weighted features for image-based localization

    No full text
    Autonomous mobile robots are becoming increasingly important in many industrial and domestic environments. Dealing with unforeseen situations is a difficult problem that must be tackled to achieve long-term robot autonomy. In vision-based localization and navigation methods, one of the major issues is the scene dynamics. The autonomous operation of the robot may become unreliable if the changes occurring in dynamic environments are not detected and managed. Moving chairs, opening and closing doors or windows, replacing objects and other changes make many conventional methods fail. To deal with these challenges, we present a novel method for change detection based on weighted local visual features. The core idea of the algorithm is to distinguish the valuable information in stable regions of the scene from the potentially misleading information in the regions that are changing. We evaluate the change detection algorithm in a visual localization framework based on feature matching by performing a series of long-term localization experiments in various real-world environments. The results show that the change detection method yields an improvement in the localization accuracy, compared to the baseline method without change detection. In addition, an experimental evaluation on a public long-term localization data set with more than 10 000 images reveals that the proposed method outperforms two alternative localization methods on images recorded several months after the initial mapping.This work was supported by the European Regional Development Fund under the project Robotics for Industry 4.0 (reg. no. CZ.02.1.01/0.0/0.0/15_003/0000470) and by the Grant Agency of the Czech Technical University in Prague, grant no.SGS19/174/OHK3/3T/13. This research has also received funding from HEROITEA: Heterogeneous Intelligent Multi-Robot Team for Assistance of Elderly People (RTI2018-095599-B-C21), funded by Spanish Ministerio de Economia y Competitividad, and the RoboCity2030 - DIH-CM project (S2018/NMT-4331, RoboCity2030 - Madrid Robotics Digital Innovation Hub, Spain)

    Milling effects on the distribution of Curie temperatures and magnetic properties of Ni-doped La0·7Ca0·3MnO3 compounds

    No full text
    A systematic study of the magnetic and magnetocaloric properties around the ferromagnetic-paramagnetic phase transition temperature have been carried out on La0.7Ca0.3Mn1-xNixO3 (x = 0, 0.02, 0.07, 0.10) compounds synthesized by ball milling from oxides and pure Ni. The order of the transition, analyzed by the Banerjee’s criterion and the field dependence of the magnetic entropy change, was found to be of second order for all the studied compositions. The existence of small traces of �����-MnO2 phase and the distortions produced during the milling process may induce a competition character of the ferromagnetic and the antiferromagnetic interactions at low fields and motivate the existence of a distribution of Curie temperatures. Once the antiferromagnetic contributions are avoided, the parameters of the distribution, the average Curie temperature ���������� ̅̅̅ and the broadening of the distribution ∆����������, have been obtained from the analysis of the approach to saturation curves and the magnetocaloric effect.Agencia Estatal de Investigación MAT 2016-77265-RJunta de Andalucía US-126017
    corecore